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1 Locally Convex Topological Vector Spaces

1.1 Topologies generated by seminorms

Definition 1.1. A topological vector space (TVS) over F is a vector space (X,7T)
with a topology such that

1. X x X — X sending (z,y) — x + y is continuous,
2. F x X = X sending (o, z) — ax is continuous.

Let X be a vector space over [F, and let P be a family of seminorms on X. We can use
P to generate a topology (like how we do with norms). We get a base for the topology
given by

k
{ﬂ{m:p(x—mi) <5i}:pl,...,pk673,171,...,:%GX,si,...,6k>O}.
i=1

Definition 1.2. A TVS X is alocally convex space (LCS) if the topology is is generated
by some family P of seminorms and (),cp{z : p(z) = 0} — {0} (the seminorms separate
points).

Proposition 1.1. Let X be a TVS, and let p be a seminorm on X. The following are
equivelent:

1. p s continuous.

2. {z : p(x) < 1} is open.
3. 0 € int{x : p(x) < 1}.
4. 0 € int{z : p(z) < 1}.

5. p 1s continuous at 0.



6. There is a continuous seminorm q such that p <gq.

Proof. The first four statements get weaker, so we have (1) = (2) = (3) = (4).
(4) = (5): Let ¢ > 0. Then

U=int{x : p(z) <e/2} =¢/2 - (int({z : p(x) < 1})).

(5) = (1): Compose with translations.
(6) = (1): Suppose taht p < ¢. Then 0 € {¢g < 1} C int{p < 1}. O

Proposition 1.2. Let p1,...,p, be continuous seminorms. Then p1+- - -+ p, and max; p;
are continuous Seminorms.

Proposition 1.3. If (p;); is a family of continuous seminorms and p; < q for all i, where
q s a continuous seminorm, then sup; p; s continuous.

Example 1.1. Let X be a (Tychonoff)! topological space, let K C X be compact, and
let p (f) = || flk|lsup- Then {px : K C X compact} generate a locally convex topology.
On R™, this topology is generated by {pm :n € N}

Example 1.2. Let X be a normed space. For any f € X*, let ps(xz) = |f(z)|. Then X
with the resulting LCS structure is called X with the weak topology.

1.2 Convex sets

Definition 1.3. Let X be a vector space, and let A C X. The convex hull of A is
coA = ﬂ{C :C D A, C convex}.
The closed convex hull of A is

CoA = ﬂ{C : C' D A, C convex and closed}.

Proposition 1.4. GA = co A.

Proof. (2): The left hand side, closed, convex and contains A.

(C): It suffices to show that co A is convex. Consider ¢ = ta+(1—t)bforaa,b € co A and
0 <t < 1. Consider F': X x X — X given by (z,y) — tx+ (1—t)y; F is continuous. Then
for any neighborhood W 3 ¢, there is a neighborhood W' > (a,b) such that F[W'| C W.
By the definition of the product topology, we can find a neighborhood U x V' C W' with
the same property. Now pick ¢’ € UNcoA and V' € BNcoA. Now F(d,b') € WNcoA.
So ¢ € co A, as desired. O

'This means that it is Hausdorff and whenever zinX and A C X is closed, there is an f € C(X) such
that f(z) =0 and f|a = 1. If X is not Tychonoff, this still works, but the space is actually very small.



1.3 Correspondence between nice convex sets and seminorms

Definition 1.4. Let X be a vector space over F, and let A C X be convex.
1. Ais balanced if €A C A for all @ € F and || < 1.
2. A is absorbing if for all z € X, there is a 8 € (0, 00) such that x € SA.
3. A is absorbing at a € A if A — a is absorbing.

Proposition 1.5. Let X be a vector space over F. If V is a nonempty, balanced, convex
set which is absorbing at all its points, then there is a unique seminorm on X such that
V={z:plx) <1}

Proof. Define p(x) := inf{t > 0: z € tV}. This is called the Minkowski functional of
V. Then p is a seminorm:

e (homogeneity): p(ax) = inf{t: ax € tV} = |a|inf{t : @—‘x} = |a|p(z).

e (subadditivity): If ,y, suppose x € tV and y € sV. Then x+y € tV+sV = (t+s)V
(by convexity). So if p(x) <t and p(y) < s, then p(z +y) <t + s.

If p(x) < 1, then x € tV for some ¢t < 1. Because V is balanced, V 2D tV, so x € V.
This gives {p <1} C V.

Conversely, suppose € V. Then p(z) < 1. Since V is absorbing at x, there exists
some € > 0 such that z +ex € V. So p(z) <1/(1+4¢) < 1. This gives V C {p < 1}.

Uniqueness: if seminorms satisfy {p < 1} = {¢ < 1}, then p = ¢ (from lecture 1). O

Corollary 1.1. A TVS is a LCS if and only if the collection of convex, balanced sets
absorbing all their own points is a neighborhood base at 0.

Proposition 1.6. A LCS is generated by a translation invariant metric if and only if it
is generated by a countable family of seminorms.

Proof. If (pn)22, is a sequence of seminorms, then we can define

o0

d(z,y) ::;2_”%. O

Definition 1.5. A convex set A in a TVS X is bounded if for any neighborhood U of 0,
there is a t < oo such that tU D A.

Theorem 1.1. A LCS is normable if and only if it has a bounded, open neighborhood of
0.



	Locally Convex Topological Vector Spaces
	Topologies generated by seminorms
	Convex sets
	Correspondence between nice convex sets and seminorms


