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1 Locally Convex Topological Vector Spaces

1.1 Topologies generated by seminorms

Definition 1.1. A topological vector space (TVS) over F is a vector space (X, T )
with a topology such that

1. X ×X → X sending (x, y) 7→ x+ y is continuous,

2. F×X → X sending (α, x) 7→ αx is continuous.

Let X be a vector space over F, and let P be a family of seminorms on X. We can use
P to generate a topology (like how we do with norms). We get a base for the topology
given by{

k⋂
i=1

{x : p(x− xi) < εi} : p1, . . . , pk ∈ P, x1, . . . , xk ∈ X, εi, . . . , εk > 0

}
.

Definition 1.2. A TVSX is a locally convex space (LCS) if the topology is is generated
by some family P of seminorms and

⋂
p∈P{x : p(x) = 0} − {0} (the seminorms separate

points).

Proposition 1.1. Let X be a TVS, and let p be a seminorm on X. The following are
equivelent:

1. p is continuous.

2. {x : p(x) < 1} is open.

3. 0 ∈ int{x : p(x) < 1}.

4. 0 ∈ int{x : p(x) ≤ 1}.

5. p is continuous at 0.
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6. There is a continuous seminorm q such that p ≤ q.

Proof. The first four statements get weaker, so we have (1) =⇒ (2) =⇒ (3) =⇒ (4).
(4) =⇒ (5): Let ε > 0. Then

U = int{x : p(x) ≤ ε/2} = ε/2 · (int({x : p(x) ≤ 1})).

(5) =⇒ (1): Compose with translations.
(6) =⇒ (1): Suppose taht p ≤ q. Then 0 ∈ {q < 1} ⊆ int{p < 1}.

Proposition 1.2. Let p1, . . . , pn be continuous seminorms. Then p1 + · · ·+pn and maxi pi
are continuous seminorms.

Proposition 1.3. If (pi)i is a family of continuous seminorms and pi ≤ q for all i, where
q is a continuous seminorm, then supi pi is continuous.

Example 1.1. Let X be a (Tychonoff)1 topological space, let K ⊆ X be compact, and
let pK(f) = ‖f |K‖sup. Then {pK : K ⊆ X compact} generate a locally convex topology.

On Rn, this topology is generated by {p
B(0,n)

: n ∈ N}.

Example 1.2. Let X be a normed space. For any f ∈ X∗, let pf (x) = |f(x)|. Then X
with the resulting LCS structure is called X with the weak topology.

1.2 Convex sets

Definition 1.3. Let X be a vector space, and let A ⊆ X. The convex hull of A is

coA :=
⋂
{C : C ⊇ A,C convex}.

The closed convex hull of A is

coA :=
⋂
{C : C ⊇ A,C convex and closed}.

Proposition 1.4. coA = coA.

Proof. (⊇): The left hand side, closed, convex and contains A.
(⊆): It suffices to show that coA is convex. Consider c = ta+(1−t)b for a a, b ∈ coA and

0 < t < 1. Consider F : X×X → X given by (x, y) 7→ tx+(1− t)y; F is continuous. Then
for any neighborhood W 3 c, there is a neighborhood W ′ 3 (a, b) such that F [W ′] ⊆ W .
By the definition of the product topology, we can find a neighborhood U × V ⊆ W ′ with
the same property. Now pick a′ ∈ U ∩ coA and b′ ∈ B ∩ coA. Now F (a′, b′) ∈ W ∩ coA.
So c ∈ coA, as desired.

1This means that it is Hausdorff and whenever xınX and A ⊆ X is closed, there is an f ∈ C(X) such
that f(x) = 0 and f |A = 1. If X is not Tychonoff, this still works, but the space is actually very small.
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1.3 Correspondence between nice convex sets and seminorms

Definition 1.4. Let X be a vector space over F, and let A ⊆ X be convex.

1. A is balanced if αA ⊆ A for all α ∈ F and |α| ≤ 1.

2. A is absorbing if for all x ∈ X, there is a β ∈ (0,∞) such that x ∈ βA.

3. A is absorbing at a ∈ A if A− a is absorbing.

Proposition 1.5. Let X be a vector space over F. If V is a nonempty, balanced, convex
set which is absorbing at all its points, then there is a unique seminorm on X such that
V = {x : p(x) < 1}.

Proof. Define p(x) := inf{t ≥ 0 : x ∈ tV }. This is called the Minkowski functional of
V . Then p is a seminorm:

• (homogeneity): p(αx) = inf{t : αx ∈ tV } = |α| inf{t : α
|α|x} = |α|p(x).

• (subadditivity): If x, y, suppose x ∈ tV and y ∈ sV . Then x+y ∈ tV +sV = (t+s)V
(by convexity). So if p(x) ≤ t and p(y) ≤ s, then p(x+ y) ≤ t+ s.

If p(x) < 1, then x ∈ tV for some t < 1. Because V is balanced, V ⊇ tV , so x ∈ V .
This gives {p < 1} ⊆ V .

Conversely, suppose x ∈ V . Then p(x) ≤ 1. Since V is absorbing at x, there exists
some ε > 0 such that x+ εx ∈ V . So p(x) ≤ 1/(1 + ε) < 1. This gives V ⊆ {p < 1}.

Uniqueness: if seminorms satisfy {p < 1} = {q < 1}, then p = q (from lecture 1).

Corollary 1.1. A TVS is a LCS if and only if the collection of convex, balanced sets
absorbing all their own points is a neighborhood base at 0.

Proposition 1.6. A LCS is generated by a translation invariant metric if and only if it
is generated by a countable family of seminorms.

Proof. If (pn)∞n=1 is a sequence of seminorms, then we can define

d(x, y) :=

∞∑
n=1

2−n
pn(x− y)

1 + pn(x− y)
.

Definition 1.5. A convex set A in a TVS X is bounded if for any neighborhood U of 0,
there is a t <∞ such that tU ⊇ A.

Theorem 1.1. A LCS is normable if and only if it has a bounded, open neighborhood of
0.
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